A compact rational Krylov method for large‐scale rational eigenvalue problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact Rational Krylov Methods for Nonlinear Eigenvalue Problems

We propose a new uniform framework of Compact Rational Krylov (CORK) methods for solving large-scale nonlinear eigenvalue problems: A(λ)x = 0. For many years, linearizations are used for solving polynomial and rational eigenvalue problems. On the other hand, for the general nonlinear case, A(λ) can first be approximated by a (rational) matrix polynomial and then a convenient linearization is us...

متن کامل

Compact Rational Krylov Methods for the Nonlinear Eigenvalue Problem

We present a new framework of Compact Rational Krylov (CORK) methods for solving the nonlinear eigenvalue problem (NLEP): A(λ)x = 0, where λ ∈ Ω ⊆ C is called an eigenvalue, x ∈ Cn \ {0} the corresponding eigenvector, and A : Ω→ Cn×n is analytic on Ω. Linearizations are used for many years for solving polynomial eigenvalue problems [5]. The matrix polynomial P (λ) = ∑d i=0 λ Pi, with Pi ∈ Cn×n,...

متن کامل

A Rational Krylov Method Based on Hermite Interpolation for Nonlinear Eigenvalue Problems

This paper proposes a new rational Krylov method for solving the nonlinear eigenvalue problem (NLEP): A(λ)x = 0. The method approximates A(λ) by Hermite interpolation where the degree of the interpolating polynomial and the interpolation points are not fixed in advance. It uses a companion-type reformulation to obtain a linear generalized eigenvalue problem (GEP). To this GEP we apply a rationa...

متن کامل

Rational Krylov Algorithms for Eigenvalue Computation and Model Reduction

Rational Krylov is an extension of the Lanczos or Arnoldi eigenvalue algorithm where several shifts (matrix factorizations) are performed in one run. A variant has been developed, where these factoriza-tions are performed in parallel. It is shown how Rational Krylov can be used to nd a reduced order model of a large linear dynamical system. In Electrical Engineering, it is important that the re...

متن کامل

Nleigs: a Class of Robust Fully Rational Krylov Methods for Nonlinear Eigenvalue Problems∗

A new rational Krylov method for the efficient solution of nonlinear eigenvalue problems, A(λ)x = 0, is proposed. This iterative method, called fully rational Krylov method for nonlinear eigenvalue problems (abbreviated as NLEIGS), is based on linear rational interpolation and generalizes the Newton rational Krylov method proposed in [R. Van Beeumen, K. Meerbergen, and W. Michiels, SIAM J. Sci....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerical Linear Algebra with Applications

سال: 2018

ISSN: 1070-5325,1099-1506

DOI: 10.1002/nla.2214